Morphing a Plasmonic Nanodisk into a Nanotriangle
نویسندگان
چکیده
We morph a silver nanodisk into a nanotriangle by producing a series of nanoparticles with electron beam lithography. Using electron energy loss spectroscopy (EELS), we map out the plasmonic eigenmodes and trace the evolution of edge and film modes during morphing. Our results suggest that disk modes, characterized by angular order, can serve as a suitable basis for other nanoparticle geometries and are subject to resonance energy shifts and splittings, as well as to hybridization upon morphing. Similar to the linear combination of atomic orbitals (LCAO) in quantum chemistry, we introduce a linear combination of plasmonic eigenmodes to describe plasmon modes in different geometries, hereby extending the successful hybridization model of plasmonics.
منابع مشابه
Radiative Enhancement of Plasmonic Nanopatch Antennas
Efficient light manipulation at subwavelength scale is of great interest for solar energy conversion, optical sensing, and nanophotonic devices. Recently, plasmonic nanopatch antennas (PNAs), which consist of plasmonic nanoparticles and metal films with thin layers of dielectric spacers sandwiched between them, have shown promise for directing and enhancing radiation from the dipole emitters at...
متن کاملFrom Fano-like interference to superscattering with a single metallic nanodisk.
Superscattering was theoretically proposed to significantly enhance the scattering cross-section of a subwavelength nanostructure, far exceeding its single-resonance limit by employing resonances of multiple plasmonic modes. By numerical simulation, we design a subwavelength nanodisk as a simple candidate to achieve superscattering. Due to the phase retardation, the subradiant mode can be excit...
متن کاملScalable manufacturing of plasmonic nanodisk dimers and cusp nanostructures using salting-out quenching method and colloidal lithography.
Localization of large electric fields in plasmonic nanostructures enables various processes such as single-molecule detection, higher harmonic light generation, and control of molecular fluorescence and absorption. High-throughput, simple nanofabrication techniques are essential for implementing plasmonic nanostructures with large electric fields for practical applications. In this article we d...
متن کاملStrong Exciton-Plasmon Coupling in MoS2 Coupled with Plasmonic Lattice.
We demonstrate strong exciton-plasmon coupling in silver nanodisk arrays integrated with monolayer MoS2 via angle-resolved reflectance microscopy spectra of the coupled system. Strong exciton-plasmon coupling is observed with the exciton-plasmon coupling strength up to 58 meV at 77 K, which also survives at room temperature. The strong coupling involves three types of resonances: MoS2 excitons,...
متن کاملFrom Fano-like Interference to Superscattering with Single Metallic Nanodisk
Superscattering was theoretically proposed to significantly enhance the scattering cross section of a subwavelength nanostructure, far exceeding its single-resonance limit by employing resonances of multiple plasmonic modes. By numerical simulation, we design a subwavelength nanodisk as a simple candidate to achieve superscattering. Due to the phase retardation, the subradiant mode can be excit...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 14 شماره
صفحات -
تاریخ انتشار 2014